The effects of wrist motion and hand orientation on muscle forces: A physiologic wrist simulator study
نویسندگان
چکیده
Although the orientations of the hand and forearm vary for different wrist rehabilitation protocols, their effect on muscle forces has not been quantified. Physiologic simulators enable a biomechanical evaluation of the joint by recreating functional motions in cadaveric specimens. Control strategies used to actuate joints in physiologic simulators usually employ position or force feedback alone to achieve optimum load distribution across the muscles. After successful tests on a phantom limb, unique combinations of position and force feedback - hybrid control and cascade control - were used to simulate multiple cyclic wrist motions of flexion-extension, radioulnar deviation, dart thrower's motion, and circumduction using six muscles in ten cadaveric specimens. Low kinematic errors and coefficients of variation of muscle forces were observed for planar and complex wrist motions using both novel control strategies. The effect of gravity was most pronounced when the hand was in the horizontal orientation, resulting in higher extensor forces (p<0.017) and higher out-of-plane kinematic errors (p<0.007), as compared to the vertically upward or downward orientations. Muscle forces were also affected by the direction of rotation during circumduction. The peak force of flexor carpi radialis was higher in clockwise circumduction (p=0.017), while that of flexor carpi ulnaris was higher in anticlockwise circumduction (p=0.013). Thus, the physiologic wrist simulator accurately replicated cyclic planar and complex motions in cadaveric specimens. Moreover, the dependence of muscle forces on the hand orientation and the direction of circumduction could be vital in the specification of such parameters during wrist rehabilitation.
منابع مشابه
Control of a wrist joint motion simulator: A phantom study
The presence of muscle redundancy and co-activation of agonist-antagonist pairs in vivo makes the optimization of the load distribution between muscles in physiologic joint simulators vital. This optimization is usually achieved by employing different control strategies based on position and/or force feedback. A muscle activated physiologic wrist simulator was developed to test and iteratively ...
متن کاملLong Term Effects of Volar-Dorsal Wrist/ Hand Immobilization Splint on Motor Components and Function of Stroke Patients
Objectives: This study was designed to determine the effects of Volar-Dorsal Wrist/Hand Immobilization Splint on upper extremity motor components and function of stroke patients. Methods: fourteen patients were participated in this study. The patients were selected based on the inclusion and exclusion criteria, and were given the splint after a primary evaluation. They were re-evaluated afte...
متن کاملGenerating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients
Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...
متن کاملMANAGEMENT AND RESULTS OF EXTENSIVE VOLAR WRIST LACERATIONS: “THE SPAGHETTI WRIST“ IN 124 PATIENTS DURING A 5 YEAR PERIOD IN 15TH KHORDAD HOSPITAL TEHRAN
ABSTRACT Background: Spaghetti wrist is a sharp volar wrist laceration in which at least 10 structures, including tendons, at least one major nerve and usually one major vessel are divided. These injuries are usually accompanied with severe permanent complications. The aim of this study was to evaluate the spaghetti wrist injury in Iran and find ways to decrease complications and obtain better...
متن کاملA Dynamic Grasping Assessment System for Measuring Finger Forces during Wrist Motion
A device that provides quantitative assessment of the grasping function and allows grasping function improvements to be monitored over time can potentially be very useful for hand surgeons, physiotherapists and occupational therapists. A Dynamic Grasping Assessment System (DGAS) that is capable of measuring finger forces during wrist extension, flexion, adduction and abduction was developed. Th...
متن کامل